SYNTHESIS OF 5-FLUCRO-PROSTAGLANDINS

Hisao NAKAI, Nobuyuki HAMANAKA, Hajimu MIYAKE, and Masaki HAYASHI*

Research Institute, Ono Pharmaceutical Co., Ltd.,

3-1-1, Shimamoto-cho, Mishima-gun, Osaka 618

(5E)- And (5Z)-5-fluoro-prostaglandin(PG)F $_{2\alpha}$ methyl esters $\underline{1}$ and $\underline{2}$ were synthesized $\underline{\text{via}}$ decarboxylative elimination reaction from key intermediate α -fluoro- β -hydroxy ester $\underline{7}$. 5-Fluoro-6-keto-PGE $_1$ methyl ester $\underline{3}$ was also synthesized from the key intermediate $\underline{7}$. These 5-fluoro-PGs $\underline{1}$, $\underline{2}$ and $\underline{3}$ showed interesting biological properties.

Recent publications have described the syntheses of fluorinated PGs related to natural $PGF_{2\alpha}^{\ \ 1)}$ and modified PGs^2 . But few examples are known about PGs containing fluorinated α -chain³. In this paper we wish to report the synthesis of (5E)- and (5Z)-5-fluoro-PGF_{2 α} methyl esters <u>1</u> and <u>2</u>, and 5-fluoro-6-keto-PGE₁ methyl ester <u>3</u> which indicate interesting biological properties, using a new synthetic method concerned with the construction of fluoro-olefin modelies.

The α -fluoro ester $\underline{4}$ [ir ν 1770, 1750 cm⁻¹; nmr \hat{c} 3.65(3H,s), 3.15(6H,s)] was obtained by the treatment of methyl 2-fluoro-6-hydroxyhexanoate⁴) with 2-methoxy-propene in the presence of p-TsOH in $\mathrm{CH_2Cl_2}(25^\circ\mathrm{C},\ 30\ \mathrm{min})$. Treatment of $\underline{4}$ with lithium diisopropylamide in $\mathrm{THF}(-78^\circ\mathrm{C},\ 10\ \mathrm{min})$ followed by addition of aldehyde $\underline{6}^5$) in $\mathrm{THF}(-78^\circ\mathrm{C}$ warming to $25^\circ\mathrm{C}$ in 1 h) gave $\underline{7}$ [ir ν 3400, 1770, 1745, 980 cm⁻¹] as an inseparable mixture of diastereomers in 70% yield. Hydrolysis of $\underline{7}$ with 1N NaOH in MeOH(65°C, 30 min) followed by acidification with solid oxalic acid gave α -fluoro- β -hydroxy acid $\underline{8}$ [ir ν 3400, 3500-2400, 1760-1740 cm⁻¹] quantitatively. Decertoxylative elimination reaction of $\underline{8}$ by the treatment with DMF dimethyl acetal in $\mathrm{CHCl_3}(25^\circ\mathrm{C},\ 1\ h$, then reflux for 1.5 h)⁶⁾ gave fluoro-clefin $\underline{10}$ [nmr \mathcal{S} 5.65-5.25(2H,m), 5.24-4.80(1H,m), 4.80-4.50(3H,m)] as an inseparable mixture of geometrical isomers(E:Z=1:3)⁷⁾ quantitatively. Treatment of $\underline{10}$ with 1N HCl in $\mathrm{THF}(0^\circ\mathrm{C},\ 30\ \mathrm{min})$ followed by Sarett

$$_{\text{CH}_3\text{OOC}}$$
 $\xrightarrow{\text{F}}$ $_{\text{OCH}_3}$ $_{\text{OCH}_3}$

- 10 R=CH₂0
- 11 R=COOH
- 12 R==COCCH₃

OH F COOCH 3 OH OH
$$\frac{2}{2}$$
 $\frac{2}{3}$

$$\frac{7}{8} R^{1} = CH_{3}, R^{2} = 0CH_{3}$$
 $\frac{8}{8} R^{1} = H, R^{2} = 0CH_{3}$
 $\frac{9}{8} R^{1} = CH_{3}, R^{2} = H$

 $13 R^{1} = COOCH_{3}, R^{2} = R^{3} = THP$

 $14 R^1 = H$, $R^2 = R^3 = THP$

 $15 R^1 = H, R^2 = R^3 = H$

 $16 \text{ R}^1 = \text{H}, \text{ R}^2 = \text{H}, \text{ R}^3 = \text{Ph}_3 \text{Si}$

oxidation gave tri-THF ether of 5(E,Z)-5-fluoro-PGF_{2 α} 11[ir γ 3500-2600, 1720 cm⁻¹] in 53% yield based on 10. Esterification of 11 with CH_2N_2 followed by deprotection in usual manner gave a separable mixture of (5E)- and (5Z)-fluoro-PGF_{2 α} methyl esters in the ratio of 1:3⁸). Pure (5Z)-5-fluoro-PGF_{2 α} methyl ester 2[mp 61-62°C; ir γ 3350, 1740, 1710 cm⁻¹; nmr \hat{c} 4.63(1H,dt,J=38,7.5 Hz); m/e 368.238(M⁺-H₂0) (calcd for $C_{21}H_{33}O_4F:368.236$)] was obtained by fractional crystallization from diisopropyl ether. Further purification of mother liquor by column chromatography on silica gel impregnated with phosphomolybdic acid⁹⁾ gave (5E)-5-fluoro-PGF_{2 α} methyl ester 1[ir γ 1740, 1700 cm⁻¹; nmr γ 5.60(1H,dt,J=22,7.5 Hz); m/e 368.234(M⁺-H₂0) (calcd for $C_{21}H_{33}O_4F:$ 368.236)].

5-Fluoro-6-keto-FGE₁ methyl ester 2 was synthesized from 7 as follows. Treatment of 7 with 1N HCl in THF(0°C, 30 min) gave diol 9 ir ν 3450, 1770, 1745 cm⁻¹ quantitatively. Sarett oxidation of 9(50°C, 3 h) followed by the treatment with CH₂N₂ gave keto diester 13 [ir ν 1765, 1745 cm⁻¹] in 77% yield. Treatment of 13 with DMSO-NaCl-H₂O(50:2.8:1) at 150°C for 1 h¹⁰) gave keto ester 14 [ir ν 1745, 1735 cm⁻¹] in 77% yield. Deprotection of 14 in usual manner gave 5-fluoro-6-keto-PGF_{1 α} methyl ester 15 [ir ν 3450, 1735 cm⁻¹] in 77% yield. Selective protection of 11- and 15-hydroxy groups with triphenylsilyl group(2 equiv Ph₃SiBr in pyridine, -40°C, 15 min) followed by Collins oxidation gave 11,15-bis-triphenylsilyl ether of 5-fluoro-6-keto-PGE₁ methyl ester 17 [nmr ϵ 7.70-7.10(30H,m)] ir 47% yield based on 15. Deprotection of 17 with AcOH-H₂O-THF(3:1:1) at 70°C for 2 h gave 5-fluoro-6-keto-PGE₁ methyl ester 2 [ir ν 3400, 1740 cm⁻¹; m/e 382.214(M⁺-H₂O) (calcd for C₂₁H₃₁O₅F:382.215)] as an inseparable mixture concerned with the configuration of 5-fluoro group in 70% yield.

These 5-fluoro-PGs showed interesting biological properties. For example 5-fluoro-6-keto-PGE₁ methyl ester $\frac{2}{2}$ was 10 times more potent than PGE₁ in uterine contractile activity(rat) and 10 times more potent than PGE₁ in inhibition of stress ulcer(rat).

References and Notes

- (a) P. A. Grieco, T. Sugahara, Y. Yokoyama, and E. Williams, J. Org. Chem., <u>44</u>, 2189(1979) and references cited.
 (b) P. A. Grieco, E. Williams, and T. Sugahara, J. Org. Chem., <u>44</u>, 2194(1979).
- 2) H. Nakai, N. Hamanaka, and M. Kurono, Chem. Lett., 1979, 63.
- 3) J. Nakano, E. Anggard, and B. Samuelsson, Eur. J. Biochem., 11, 386(1969).

- 4) Methyl 2-fluoro-6-hydroxyhexanoate was prepared from 4-chlorobutanol by sequential reactions: i) DHP, p-TsOH/CH₂Cl₂(0°C, 30 min, 100%), ii) NaCN/DMSO(11C°C, 3 h, 100%), iii) DIBAL/toluene(-70°C, 2 h), iv) 5% $\rm H_2SO_4(0°C, 1 h, 78\%)$, v) NaCN-NaHSO₃ / $\rm H_2O(0°C, 30 min, 100\%)$, vi) TsCl/Et₃N(0°C, 30 min, 100%), vii) KF/diethylene glycol(130°C, 1.5 h, 62%), viii) 30% $\rm H_2O_2$ -1N NaOH/aqueous MeOE(25°C, 30 min, 53%), ix) KOH/aqueous EtOH(90°C, 1 h, 83%), x) CH₂N₂/MeOH-Et₂O(25°C, 5 min, 100%), xi) aqueous AcOH/THF(65°C, 2 h, 97%).
- 5) The aldehyde $\underline{6}$ was obtained from the known compound $\underline{5}$ [E. J. Corey, N. M. Weinshenker, T. K. Schaaf, and W. Huber, J. Am. Chem. Soc., $\underline{91}$, 5675(1969)] in 63% over-all yield by the sequential reactions: i) 2N NaOH/MeOH(25°C, 30 min), ii) $\text{CH}_2\text{N}_2/\text{MeOH-Et}_2\text{O}$, iii) DHP, p-TsOH/CH₂Cl₂(0°C, 10 min), iv) DIBAL/toluene (-78°C, 30 min).
- 6) S. Hara, H. Taguchi, H. Yamamoto, and H. Nozaki, Tetrahedron Lett., 1975, 1545.
- 7) Decarboxylative elimination reaction of α -fluoro- β -hydroxy carboxylic acid $\underline{8}$ with Ph_3P and $Et0_2C-N=N-CC_2Et$ in THF(J. Mulzer, A. Pointner, A. Chucholowski, and G. Brütrup, Chem. Comm., $\underline{1979}$, 52) gave the same result as DMF acetal method concerned with the ratio of 5E- and 5Z-isomers. Based on the above results, both methods for decarboxylative elimination reaction appear to pass through \underline{trans} -elimination⁶.
- 8) The ratio of products was determined by integration of area intensities of 19 F nmr. Chemical shift of 19 F from CF₃CCCH: $\underline{1}$ 20.6 $_{ppm}$ (1F,dt,J=22,20 Hz); $\underline{2}$ 30.4 $_{ppm}$ (1F,dt,J=38,18 Hz).

The stereochemistry of newly formed double bond was determined by the coupling

constant.

- 9) Silica gel(50 g) and 200 ml of 15% EtOH solution of phosphomolybdic acid(pH 3-4, adjusted with pcwdered NaHCO₃) was well mixed and dried up in vaccuo at room temperature for 12 h.
- 10) G. Stork, Y. Nakahara, Y. Nakahara, and W. J. Greenlee, J. Am. Chem. Soc., <u>100</u>, 7775(1978).

(Received September 25, 1979)